Controllability of the Korteweg-de Vries equation on a star-shaped network

Claudia Moreno

Affiliation: Departamento de Matemática, Universidad Técnica Federico Santa María and Université Paris - Saclay

email:claudia.morenog@sansano.usm.cl

Abstract

Control theory has an important place in different scientific disciplines. This allows the study of certain properties of mathematical models that describe physical phenomena. A large part of these models use different types of partial differential equations being of interest to us systems of coupled equations from an applied perspective.

In this talk the Korteweg-de Vries equation will be presented in a star-shaped network. This system is formed by N Korteweg-de Vries equations coupled by the boundary conditions. In the literature (see[1]), there is a recent result proving the exact controllability of this system by using (N+1) controls where N controls act on the external nodes of the network and the other one is a central control. It will be shown that the system is exactly controllable with fewer controls. The system is described by the following equations:

$$\begin{cases} (\partial_t u_j + \partial_x u_j + u_j \partial_x u_j + \partial_x^3 u_j)(t, x) = 0, & \forall x \in (0, l_j), \forall t > 0, j = 1, ..N, \\ u_j(t, 0) = u_k(t, 0), & \forall t > 0, j, k = 1, ..N, \\ \sum_{j=1}^N \partial_x^2 u_j(t, 0) = -\alpha u_1(t, 0) - \frac{N}{3} (u_1(t, 0))^2 + g(t), & \forall t > 0, j = 1, ..N, \\ u_j(t, l_j) = 0, & \forall t > 0, j = 1, ..N, \\ \partial_x u_j(t, l_j) = g_j(t), & \forall t > 0, j = 1, ..N, \\ u_j(0, x) = u_j^0(x), & \forall x \in (0, l_j), j = 1, ..., N. \end{cases}$$

$$(1)$$

We use the duality and multiplier method to study the controllability of the linearized system around the origin and the fixed point theory to include nonlinearities.

References

 K. Ammari, E. Crépeau. Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a star-shaped network. SIAM J. Control Optim (2018). 1620 - 1639.